Search results for "characteristic length"

showing 10 items of 22 documents

Growth of Domains and Scaling in the Late Stages of Phase Separation and Diffusion-Controlled Ordering Phenomena

1991

These lectures consider the kinetics of phase changes, induced by a sudden change of external thermodynamic parameters. E.g., we treat a system with a second-order transition at a critical temperature Tc (Fig. 1, left part). For T0 > Tc the system is disordered, while for T < Tc there is an order parameter ± ψ (implying one-component orderings, e.g., an Ising model; later we discuss generalizations). We consider a “quenching experiment”: The system is brought from an initially disordered state at T0 to a state at T where in equilibrium the system should be orderedl. Since no sign of ψ is preferred, the system starts forming locally ordered regions of either sign, separated by domain walls. …

BinodalPhysicsInternal energyCondensed matter physicsCharacteristic lengthPhase (matter)Ising modelScalingBrownian motionSign (mathematics)
researchProduct

Thermomechanical effects in the flow of a fluid in porous media

2002

This paper deals with analysis, by methods of extended thermodynamics, of the thermomechanical effects which arise in the flow of a weakly viscous fluid in a porous medium. Under the hypothesis that the fluid fills all the interstices among the powder and that the size of the powder grains and of the interstices is much lower than a suitable characteristic length, linearized field equations are written, which include, in a natural way, terms which take into account the Dufour, Soret, and virtual mass effects. As a limiting case when the evolution time of the heat flux goes to infinite and no entropy flux is carried, the flow of liquid helium II in a porous medium is obtained.

Characteristic lengthThermodynamicsViscous liquidComputer Science ApplicationsPhysics::Fluid DynamicsHeat fluxModeling and SimulationMass transferModelling and SimulationHeat transferFluid dynamicsBoundary value problemPorous mediumMathematicsMathematical and Computer Modelling
researchProduct

Salt-induced microheterogeneities in binary liquid mixtures

2017

The salt-induced microheterogeneity (MH) formation in binary liquid mixtures is studied by small-angle x-ray scattering (SAXS) and liquid state theory. Previous experiments have shown that this phenomenon occurs for antagonistic salts, whose cations and anions prefer different components of the solvent mixture. However, so far the precise mechanism leading to the characteristic length scale of MHs has remained unclear. Here, it is shown that MHs can be generated by the competition of short-ranged interactions and long-ranged monopole-dipole interactions. The experimental SAXS patterns can be reproduced quantitatively by fitting to the derived correlation functions without assuming any speci…

Chemical Physics (physics.chem-ph)Phase transitionSpinodalMaterials scienceCharacteristic lengthCondensed Matter - Mesoscale and Nanoscale PhysicsSmall-angle X-ray scatteringScatteringThermodynamicsFOS: Physical sciences02 engineering and technologyCondensed Matter - Soft Condensed Matter010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesSolventCondensed Matter::Soft Condensed MatterIonic strengthPhysics - Chemical PhysicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)Soft Condensed Matter (cond-mat.soft)0210 nano-technologyPhase diagram
researchProduct

Computer simulation of bottle-brush polymers with flexible backbone: good solvent versus theta solvent conditions.

2011

By Molecular Dynamics simulation of a coarse-grained bead-spring type model for a cylindrical molecular brush with a backbone chain of $N_b$ effective monomers to which with grafting density $\sigma$ side chains with $N$ effective monomers are tethered, several characteristic length scales are studied for variable solvent quality. Side chain lengths are in the range $5 \le N \le 40$, backbone chain lengths are in the range $50 \le N_b \le 200$, and we perform a comparison to results for the bond fluctuation model on the simple cubic lattice (for which much longer chains are accessible, $N_b \le 1027$, and which corresponds to an athermal, very good, solvent). We obtain linear dimensions of …

Chemical Physics (physics.chem-ph)chemistry.chemical_classificationQuantitative Biology::BiomoleculesMaterials scienceCharacteristic lengthTheta solventFOS: Physical sciencesGeneral Physics and AstronomyBackbone chainPolymerCondensed Matter - Soft Condensed MatterPower lawCondensed Matter::Soft Condensed Matterchemistry.chemical_compoundMolecular dynamicschemistryChemical physicsPhysics - Chemical PhysicsSide chainSoft Condensed Matter (cond-mat.soft)Physical and Theoretical ChemistrySolvent effectsThe Journal of chemical physics
researchProduct

Spinodal decomposition of polymer solutions: molecular dynamics simulations of the two-dimensional case.

2012

As a generic model system for phase separation in polymer solutions, a coarse-grained model for hexadecane/carbon dioxide mixtures has been studied in two-dimensional geometry. Both the phase diagram in equilibrium (obtained from a finite size scaling analysis of Monte Carlo data) and the kinetics of state changes caused by pressure jumps (studied by large scale molecular dynamics simulations) are presented. The results are compared to previous work where the same model was studied in three-dimensional geometry and under confinement in slit geometry. For deep quenches the characteristic length scale ℓ(t) of the formed domains grows with time t according to a power law close to [Formula: see…

Condensed Matter::Soft Condensed MatterMolecular dynamicsWork (thermodynamics)Materials scienceCharacteristic lengthSpinodal decompositionTime evolutionThermodynamicsGeneral Materials ScienceCondensed Matter PhysicsPower lawScalingPhase diagramJournal of physics. Condensed matter : an Institute of Physics journal
researchProduct

Surface-directed spinodal decomposition in a thin-film geometry: A computer simulation

1994

The phase separation kinetics of a two-dimensional binary mixture at critical composition confined between (one-dimensional) straight walls which preferentially attract one component of the mixture is studied for a wide range of distancesD between the walls. Following earlier related work on semiinfinite systems, two choices of surface forces at the walls are considered, one corresponding to an incompletely wet state of the walls, the other to a completely wet state (forD→∞). The nonlinear Cahn-Hilliard-type equation, supplemented with appropriate boundary conditions which account for the presence of surfaces, is replaced by a discrete equivalent and integrated numerically. Starting from a …

Correlation function (statistical mechanics)Materials scienceCharacteristic lengthScatteringSpinodal decompositionSurface forceStatistical and Nonlinear PhysicsGeometryBoundary value problemStructure factorScalingMathematical PhysicsJournal of Statistical Physics
researchProduct

Shear heating induced lithospheric-scale localization: Does it result in subduction?

2012

Abstract Even though it is a well-established fact that the Earth is currently in a plate-tectonics mode, the question on how to “break” lithospheric plates and initiate subduction remains a matter of debate. Here we focus on shear heating as a potential mechanism to cause lithospheric shear localization and subsequent subduction initiation in oceanic plates. It is shown that shear heating under some conditions (i) facilitates the formation of a lithospheric-scale shear zone and (ii) is capable of stabilizing a lithospheric-scale shear zone, thus creating the necessary condition for subduction initiation to occur. Furthermore, we demonstrate that not only the localization process is of impo…

Length scale010504 meteorology & atmospheric sciencesCharacteristic lengthSubductionGeophysics010502 geochemistry & geophysics01 natural sciencesGeophysicsShear (geology)13. Climate actionSpace and Planetary ScienceGeochemistry and PetrologyLithosphereOceanic crustEarth and Planetary Sciences (miscellaneous)Shear zoneEclogitizationGeology0105 earth and related environmental sciencesEarth and Planetary Science Letters
researchProduct

Cooperativity Scaling and Free Volume in Plasticized Polylactide

2019

The authors would like to thank the region Haute Normandie for their financial support and the acquisition of the Broadband Dielectric Spectrometer. R.G. acknowledges U.S. National Science Foundation (Grant no. DMR-1725188) for the acquisition of PAL spectrometer. The experimental evidence of the increase of activation energy associated with the super Arrhenius behavior governing amorphous polylactide by free volume variations has been obtained through a combination of calorimetric, dielectric, and positron annihilation lifetime measurements. The amount of free volume in polylactide was controlled by the amount of acetyltributylcitrate plasticizer in the composition. Plasticization is shown…

Materials scienceMatériaux [Sciences de l'ingénieur]Polymers and Plasticsgenetic structuresThermodynamicsCooperativity02 engineering and technologyActivation energyDielectric010402 general chemistry01 natural sciences[SPI.MAT]Engineering Sciences [physics]/MaterialsInorganic ChemistryFragilityBiopolymersmiscible polymer blendsMaterials ChemistryActivation energycharacteristic length[PHYS]Physics [physics]Drop (liquid)Organic polymersOrganic Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesAmorphous solidfragilty[CHIM.POLY]Chemical Sciences/PolymersVolume (thermodynamics)positron-annihilationtemperature-dependence[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]0210 nano-technologyGlass transitionPlastics[PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft]dynamic heterogeneity
researchProduct

1994

Materials sciencePolymers and PlasticsCondensed matter physicsCharacteristic lengthGeneral Chemical EngineeringGlass transitionActa Polymerica
researchProduct

Modeling glass materials

2005

Abstract Structural and dynamic properties of silicate melts and glasses (SiO 2 and its mixtures with Na 2 O and Al 2 O 3 ) are derived from Molecular Dynamics simulations and compared to pertinent experimental data. It is shown that these mixtures exhibit additional intermediate order as compared to pure silica, where the characteristic length scales stem from the tetrahedral network structure. While sodium ions show much faster diffusion through percolating channels than the silicon and oxygen ions forming the surrounding network, aluminium ions are incorporated into the network (leading to tricluster formation) and do not show such an enhanced mobility.

Materials scienceSiliconCharacteristic lengthProcess Chemistry and TechnologySodiumDiffusionInorganic chemistrychemistry.chemical_elementSilicateSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsIonchemistry.chemical_compoundMolecular dynamicschemistryChemical engineeringAluminiumMaterials ChemistryCeramics and CompositesCeramics International
researchProduct